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A simple one-point closure for the inner region of turbulent boundary layers subjected to adverse pres-
sure gradient is introduced. The use of local wall variables leads to self-similarity for the temperature dis-
tribution but not the velocity. A turbulent velocity scale directly related to the pressure parameter that
maintains constant the total shear stress in the inner layer is used to define an eddy viscosity and diffu-
sivity. The predicted velocity and temperature profiles agree reasonably well with the experiments. The
essence of the formulation explains why the turbulent heat flux scaled by the local inner variables is
merely unaffected contrarily to the Reynolds shear stress distribution in wall units that is significantly
sensitive to the imposed pressure gradient.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Turbulent boundary layers under the effect of adverse pressure
gradient (APG) are an undergoing research topic since more than
five decades. The first detailed investigation of turbulent APG flows
is the well-known experimental work of Clauser [1] who studied
equilibrium turbulent boundary layers with constant Clauser
parameter b. To be globally self-similar, a turbulent boundary layer
should experience a Falkner–Skan type of potential flow �u1 / xm

and the turbulent length scale in the outer layer has to vary line-
arly with the streamwise distance x [2]. Subsequent experiments
such as those conducted by [3] have clarified the statistical fea-
tures and the fine structure of the turbulence in equilibrium APG
flows. A few investigations based on direct numerical simulations
restricted to low Reynolds numbers exist also in the literature by
now [4]. Non-equilibrium APG turbulent boundary layers in which
b is no more constant are less restrictive emerging from more gen-
eral conditions. These flows have different characteristics merely
in the outer layer that is not solely affected by local scales but is
influenced by ‘‘historical” effects generated by downstream and
upstream conditions [5–6]. Yet, there is a consensus by now that
the inner layer in non-equilibrium APG turbulent layers is also
managed by regional self-similarity induced by local parameters
[7].

Turbulent transport of passive scalar has facets that are basi-
cally different from the transport of momentum in APG flows
and the analogy between the heat and momentum transfer does
ll rights reserved.
no more hold. The temperature equation does not directly contain
the pressure term, and the transfer process is indirectly affected by
the pressure gradient through the eddy diffusivity. Yet, the thermal
law of the wall is less robust than the velocity law of the wall [8–9]
despite the fact that the Reynolds shear stress is strongly affected
in the inner layer while the turbulent heat flux is insensitive to the
APG [10].

There is a multitude of simple one-point closures concerning
the turbulent boundary layers subjected to APG, such as for exam-
ple the mixing length models derived from van Driest formulation
[11,12]. The methodology followed in this note is somewhat differ-
ent. The departure point is the determination of a local velocity
scale already introduced by Skote and Henningson [13], which per-
mits a local similarity formulation. We deduce an eddy viscosity
and diffusivity by making use of this velocity scale that is directly
related to the APG parameter. Analytic relations of velocity and
temperature distribution are subsequently obtained in the inner
layer and they are compared with recent experimental results of
Houra and Nagano [10].

2. Local self-similar closure

The Reynolds averaged streamwise momentum equation in a
two-dimensional turbulent boundary layer with pressure gradient
reads for:

0 ¼ � 1
q

d�p
dx
þ m

@2�u
@y2 �

@

@y
u0v 0 ð1Þ

where the inertial terms have been locally neglected as usual. The
total shear stress in wall units is obtained by integration of (1):
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Nomenclature

cp specific heat at constant pressure
k conductivity
l dynamic viscosity
Pr Prandtl number
Prt turbulent Prandtl number
�qtot local total heat flux, ��qtot ¼ k @T

@y � qcpv 0T 0
�qw mean heat flux at the wall
�p mean pressure
�T mean temperature
�Tw mean wall temperature
�Ts local friction temperature, �Ts ¼ �qw

qcp �us
�sw mean wall shear stress, �sw ¼ q�u2

s
�stot total shear �stot ¼ l @�u

@y � qu0v 0
�u; �v mean streamwise and wall normal velocity components
u0; v 0 fluctuating streamwise and wall normal velocity com-

ponents
�u1 free-stream velocity
�u� turbulent velocity scale in the inner layer of APG flows,

�u� ¼ �usð1þPþyþÞ1=2

�us shear velocity
x,y streamwise and wall normal coordinates

Greek symbols
at eddy diffusivity

b Clauser parameter, b ¼ d1
q�u2

s

d�p
dx

d thickness of momentum boundary layer
d1 displacement thickness of momentum boundary layer
dc thickness of conductive sublayer
dmt edge of the fully turbulent mixing sublayer
dT thickness of thermal boundary layer
�hþ non-dimensional temperature, �hþ ¼ �Tw�T

�Ts
m kinematic viscosity
mt eddy viscosity
q density
P+ pressure gradient parameter in local wall units,

Pþ ¼ 1
�u3
s

m
q

d�p
dx

� �

Subscripts and superscripts
ðÞ mean values
ðÞ0 fluctuating values
ðÞþ quantities normalized by the wall variables ðm; �us; TsÞ

Abbreviations
APG adverse pressure gradient
ZPG zero pressure gradient
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�sþtot ¼ 1þ d�pþ

dxþ
yþ ¼ 1þPþyþ ð2Þ

where ()+ denotes quantities non-dimensionalized by the viscosity m
and the local shear velocity �usðxÞ and:

Pþ ¼ 1
�u3

s

m
q

d�p
dx

� �
¼ 1

�u3
s
�mu1

du1
dx

� �
¼

�uP

�us

� �3

ð3Þ

is the non-dimensional pressure gradient parameter. In the viscous
sublayer, the Reynolds shear stress is negligible. Therefore:

�uþ ¼ yþ þ 1
2

Pþyþ2 ð4Þ

Eq. (2) indicates clearly that the shear velocity �usðxÞ is not suitable
for the self-similar formulation of the turbulent boundary layers
with imposed pressure gradient. We consider the local velocity
scale [13]:

�u� ¼ �usð1þPþyþÞ1=2 ¼ �us 1þ
�u3

P

�u3
s

yþ
� �1=2

instead of �usðxÞ that implicitly takes into account the pressure gra-
dient. The total shear normalized by �u� becomes:

�s�tot ¼
�stot

q�u2
�
¼ 1

q�u2
�

q
�u3

P

�us
yþ þ q�u2

s

� �
¼ 1 ð5Þ

in a way similar to canonical boundary layers in which �sþtot ¼ 1. The
velocity scale �u� directly intervenes in the formulation of the eddy
viscosity mt / ‘tut wherein ‘t and ut are, respectively, the local turbu-
lent length and velocity scales. Taking ut ¼ �u� instead of the local
shear velocity, and ‘t = jy as in canonical layers results in:

mt ¼ jy�u� ¼ jy�usð1þPþyþÞ1=2 ð6Þ

In the fully turbulent mixing sublayer, the viscous shear stress is
negligible and:

�stot ¼ q�u2
� ¼ �qu0v 0 ¼ qmt

@�u
@y
¼ qðjy�u�Þ

@�u
@y
Inserting the definition of the modified velocity scale given by (3) in
the last equation gives:

d�uþ

dyþ
¼

�uþ�
jyþ

¼ ð1þPþyþÞ1=2

jyþ
ð7Þ

in the fully turbulent mixing sublayer. The resulting velocity distri-
bution reads for:

�uþ ¼ 1
j

ln yþ � 2 ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þPþyþ

p
þ 1

2

 !
þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þPþyþ

q
� 1

� �" #
þ BðPþÞ

ð8Þ

that is valid from the buffer to the edge of the fully turbulent mixing
(log) layer. The coefficient B(P+) is a function of the imposed pres-
sure gradient as it will be discussed in detail later in this section.
This result is not new, and has already been obtained by Skote
and Henningson [13] who used a similarity form of the velocity gra-
dient in the outer part instead of the eddy viscosity formulation gi-
ven by (6).

There is no direct contribution of the pressure gradient to the
temperature distribution that is indirectly affected in the constant
flux region through the eddy diffusivity. The local temperature
transport equation is:

0 ¼ a
@2�T
@y2 �

@v 0T 0

@y
ð9Þ

wherein the advection terms have been neglected as in (1). The to-
tal heat flux scaled with the inner variables is self-similar:

�qþtot ¼
�qtot

�qw
¼ @�hþ

@yþ
aþ atðyÞ

m
¼ @�hþ

@yþ
1
Pr
þ 1

Prt
mþt ðyþÞ

� �
¼ 1 ð10Þ

where �hþ ¼ Tw�T
�Ts

and Ts ¼ �qw
qcp �us

. Thus, it is necessary to introduce a

new velocity scale �u�, to have self-similar velocity distribution,
but the canonical wall variables �qw and �us are just adequate for
the self-similar formulation of the temperature distribution. In the
conductive sublayer yþ � dþc one simply obtains:



Fig. 2. Predicted temperature distribution in the inner layer compared with the
experimental results of Houra and Nagano [10] for P+ = 2.56 � 10�2. The flow
configuration details are given in the text. The triangles correspond to the
conductive sublayer thickness dþc ¼ 13. Best fit is obtained with dþc ¼ 10 shown
by the circles.
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�hþ ¼ Pr yþ ð11Þ

as in the turbulent boundary layer without adverse pressure gradi-
ent. In the fully turbulent sublayer wherein the molecular diffusion
is negligible one has:

d�hþ

dyþ
¼ Prt

mþt
¼ Prt

jyþ�uþ�
¼ Prt

jyþð1þPþyþÞ1=2 ð12Þ

The temperature distribution is finally given by:

yþ � dþc
�hþ ¼ Pr yþ

dþc � yþ � dþmt
�hþ

¼ Prdþc þ
Prt

j
ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þPþyþ

p
� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þPþdþc
q

� 1

0
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1
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þPþdþc

q
þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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þ 1

0
@

1
A

2
64

3
75 ð13Þ

wherein dþc ðPr;PþÞ and dþmt denotes the edge of the fully turbulent
mixing sublayer. It is supposed here that the turbulent Prandtl
number is constant. The canonical relations are of course recovered
as P+ ? 0.

3. Results

Fig. 1 compares the predicted velocity distribution given by Eqs.
(4) and (8) with the relatively recent experimental results of Houra
and Nagano [10]. The comparison is made with the strongest pres-
sure gradient parameter P+ = 2.56 � 10�2 investigated by these
authors for the sake of brevity. The Reynolds number based on
the momentum thickness is Re = 2730 and the Clauser pressure
gradient parameter is b = 3.95 in these experiments. Similar results
have of course been obtained for smaller values of P+ reported by
these authors. The best value of the constant appearing in Eq. (8) to
fit the experimental data is B(P+) = 2.5 smaller than B = 5 of the
zero pressure gradient (ZPG) turbulent boundary layer. The fact
that the additive constant B depends on the adverse pressure gra-
dient parameter and not the Reynolds number has already been
clarified in [13]. For the stronger adverse pressure gradient
P+ = 6.90 � 10�2 case that these authors have investigated through
direct numerical simulations B has been set to B = 1.5, indicating
that the additive constant decreases with P+. Fig. 1 shows that
there is an excellent agreement between the model and the exper-
iments in the inner layer yþ � dþ

2 � 300. At yþ � dþ

2 , the wake com-
ponent becomes significant. The outer layer in strong adverse
pressure gradient (APG) flows is under the influence of historical
effects that are hardly determined by local parameters [14]. The
external zone is out of scope of this note.

Fig. 2 shows the temperature profile resulting from Eq. (13). The
molecular Prandtl number is Pr = 0.7. The thickness of the conduc-
tive layer is set to dþc ¼ 10 to obtain the best fit to the experimental
data. In the standard thermal layer one has dþc � 13 at Pr = 0.7. It is
Fig. 1. Comparison between the velocity distribution given by the model (Eqs. (4)
and (8)) and the experiments of Houra and Nagano [10] for P+ = 2.56 � 10�2. The
flow configuration details are given in the text.
seen in Fig. 2 that dþc ¼ 13 results in an upward shift of the pre-
dicted values. Thus, the conductive sublayer thickness dþc ðPr;PþÞ
depends, yet slightly upon the imposed pressure gradient. The
explanation of the differences observed in dþc , in canonical and
APG boundary layers is subtle. In two-layer approximate models
of ZPG flows wherein the formulation of the buffer layer is omitted,
the intersection of the linear u+ = y+ and logarithmic uþ ¼ 1

j ln yþþB
velocity profiles takes place at dþv ¼ 10:8 (obtained by using
j = 0.41 and B = 5). In the presence of adverse pressure gradient,
however the thickness of the diffusive layer dþv decreases. The
intersection of Eqs. (4) and (8) yields indeed to dþv ¼ 8:5 that is
20% smaller than in the ZPG flow under the present conditions.
Assuming as usual that dþc

dþv
/ Pr�1=n implies that the conductive sub-

layer thickness in APG flows decreases also in the same propor-
tions. Using the values quoted to before gives indeed dþc ¼ 10:3
which is sensibly close to dþc ¼ 10 that fits the experimental data.
Thus, one can estimate the thickness of the conductive sublayer
in this simplified two-layer model quite easily, through the thick-
ness of the diffusive velocity layer itself. More elaborated schemes
have undoubtedly to take into account the dynamic and thermal
buffer (transition) layers.

The turbulent Prandtl number is Prt = 0.85, thus unaffected by
dP/dx in the inner layer, accordingly to [10]. The two-layer model
reproduces nicely the experimental temperature distribution at
yþ � dþT

2 . The contribution of the (thermal) wake component to �hþ

in the outer layer is significantly larger than in the velocity distri-
bution. The comparison of Figs. 1 and 2 shows the strong dissimi-
larity between the velocity and temperature distributions in the
inner layer. Straight lines in these figures show the standard loga-
rithmic laws of the zero pressure gradient turbulent boundary lay-
ers. It is seen that there is a systematic deficit in temperature
distribution under the effect of adverse pressure gradient with re-
spect to �hþ ¼ 2 ln yþ þ 3:8 of the canonical flow. The velocity distri-
bution however is smaller and larger than the standard
�uþ ¼ 2:44 ln yþ þ 5 law in, respectively, low and high log layers.
The break-up of the temperature and velocity analogy results from
the differences in the reaction to P+ of the Reynolds shear stress
and wall normal turbulent heat fluxes. Indeed the Reynolds shear
stress in local wall units contains directly the effect of the pressure
gradient according to Eqs. (6) and (7), i.e.:

�u0v 0þ ¼ �u0v 0
�u2
s
¼ mþt

d�uþ

dyþ
¼ 1þPþyþ ð14Þ

In return, the wall normal turbulent heat flux scaled by the local
wall variables, is unaffected by the adverse pressure gradient
according to the self-similar formulation (10), and one has:



Fig. 3. Ratios of the Reynolds shear stress and turbulent heat flux to their respective
values in the ZPG turbulent layer versus y+. Comparison of the model is made with
the experimental distributions [10] for P+ = 2.56 � 10�2.
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�v 0h0þ ¼ �v 0h0

�us�Ts
¼ 1 ð15Þ

in the fully turbulent layer, exactly as in canonical turbulent flows.
This is in agreement with [10] who indicated that the turbulent heat
flux is unaffected by the adverse pressure gradient. Fig. 3 shows the
quantities:

rm ¼
ð�u0v 0þÞPþ
ð�u0v 0þÞ0

; rh ¼
ð�v 0h0þÞPþ
ð�v 0h0þÞ0

ð16Þ

that are the ratios of the Reynolds shear stresses and heat fluxes in
the APG and ZPG flows. The predicted values are obviously
rm = 1 + P+y+ and rh = 1. There is a good qualitative and acceptable
quantitative agreement between the predictions and the experi-
ments. Fig. 3 shows that the experimental rh values, collapse per-
fectly well with the theoretical rh = 1 distribution but that the
ratio rm is over estimated. The experimental rm distribution is linear
as predicted by the model, with slop P+ = 1.7 � 10�2 that is 30%
smaller than P+ = 2.56 � 10�2. This discrepancy may only partly
be attributed to the experimental errors, yet the agreement is satis-
factory taking into account the crudeness of the model investigated
here. It is also asked here whether the real persistent parameter is
the local P or an effective pressure Peff that takes into account
the upstream historical effects. The upstream mean pressure gradi-
ent in [10] is indeed Pþeff ¼ 1

x

R x
0 PþðxÞdx ¼ 1:8� 10�2 which is curi-

ously quite close to the experimental data slop in Fig. 3. That might
be coincidental of course, and more detailed investigation is needed
to confirm or reject this hypothesis.
4. Conclusion

To conclude, self-similar formulation introduced in [13] has
been extended to the passive scalar transfer process in turbulent
boundary layers in the range going from mild to strong adverse
pressure gradients. There are acceptable concordances between
the velocity and temperature distributions inferred from the
two-layer closures introduced here and some recent experimental
results. The Reynolds shear stress in APG scaled with the local
�u0v 0þ of the ZPG flow increases linearly in the inner layer as con-
firmed both by the model and the experiments. More over, the wall
normal turbulent heat flux in wall units is unaffected by the ad-
verse pressure gradient and the velocity and temperature distribu-
tions are entirely dissimilar. The proposed closure results in simple
analytic velocity and temperature distributions in the inner layer
that can be useful at least in a first exploratory stage of the flow
analysis.
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